std::laguerre, std::laguerref, std::laguerrel
| double      laguerre( unsigned int n, double x ); double      laguerre( unsigned int n, float x ); | (1) | |
| double      laguerre( unsigned int n, Integral x ); | (2) | |
As all special functions, laguerre is only guaranteed to be available in <cmath> if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Parameters
| n | - | the degree of the polymonial, a value of unsigned integer type | 
| x | - | the argument, a value of a floating-point or integral type | 
Return value
If no errors occur, value of the nonassociated Laguerre polynomial ofx, that is | ex | 
| x! | 
| dn | 
| dxn | 
e-x), is returned.
Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
-  If xis negative, a domain error may occur
-  If nis greater or equal than 128, the behavior is implementation-defined
Notes
Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available in boost.math
The Laguerre polynomials are the polynomial solutions of the equation xy,,
+(1-x)y,
+ny = 0
The first few are:
- laguerre(0, x) = 1
- laguerre(1, x) = -x + 1
-  laguerre(2, x) = 
 [x21 2 
 -4x+2]
-  laguerre(3, x) = 
 [-x31 6 
 -9x2
 -18x+6]
Example
(works as shown with gcc 6.0)
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1 #include <cmath> #include <iostream> double L1(double x) { return -x + 1; } double L2(double x) { return 0.5*(x*x-4*x+2); } int main() { // spot-checks std::cout << std::laguerre(1, 0.5) << '=' << L1(0.5) << '\n' << std::laguerre(2, 0.5) << '=' << L2(0.5) << '\n'; }
Output:
0.5=0.5 0.125=0.125
See also
| associated Laguerre polynomials (function) | 
External links
Weisstein, Eric W. "Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.