MATH_ERRNO, MATH_ERREXCEPT, math_errhandling

From cppreference.com
< cpp‎ | numeric‎ | math
 
 
 
Common mathematical functions
Functions
Basic operations
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Exponential functions
(C++11)
(C++11)
(C++11)
(C++11)
Power functions
(C++11)
(C++11)
Trigonometric and hyperbolic functions
(C++11)
(C++11)
(C++11)
Error and gamma functions
(C++11)
(C++11)
(C++11)
(C++11)
Nearest integer floating point operations
(C++11)(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Floating point manipulation functions
(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)
(C++11)
Classification/Comparison
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Macro constants
(C++11)
(C++11)
math_errhandlingMATH_ERRNOMATH_ERREXCEPT
(C++11)
(C++11)(C++11)(C++11)(C++11)(C++11)
 
Defined in header <cmath>
#define MATH_ERRNO        1
(since C++11)
#define MATH_ERREXCEPT    2
(since C++11)
#define math_errhandling  /*implementation defined*/
(since C++11)

The macro constant math_errhandling expands to an expression of type int that is either equal to MATH_ERRNO, or equal to MATH_ERREXCEPT, or equal to their bitwise OR (MATH_ERRNO | MATH_ERREXCEPT).

The value of math_errhandling indicates the type of error handling that is performed by the floating-point operators and functions:

Constant Explanation
MATH_ERREXCEPT indicates that floating-point exceptions are used: at least FE_DIVBYZERO, FE_INVALID, and FE_OVERFLOW are defined in <cfenv>.
MATH_ERRNO indicates that floating-point operations use the variable errno to report errors.


The following floating-point error conditions are recognized:

  1. Domain error (input argument is outside the range in which the operation is mathematically defined, e.g. std::sqrt(-1), std::log(-1), or std::acos(2)). If MATH_ERRNO bit is set, EDOM is assigned to errno. If MATH_ERREXCEPT bit is set, FE_INVALID is raised.
  2. Range error (the mathematical result cannot be represented as the object of specified type, e.g. std::atanh(-1), std::log(0.0), or std::lgamma(0.0)). If MATH_ERRNO bit is set, ERANGE is assigned to errno. If MATH_ERREXCEPT bit is set, FE_DIVBYZERO or FE_OVERFLOW is raised.
  3. Overflow (the mathematical result is finite, but too big to be represented without extreme roundoff error, e.g. functions such as std::exp with sufficiently large arguments). If MATH_ERRNO bit is set, ERANGE is assigned to errno. If MATH_ERREXCEPT bit is set, FE_OVERFLOW is raised.
  4. Underflow (the mathematical result is non-zero, but too small to be represented without extreme roundoff error, e.g. the result is subnormal, as in std::sin(subnormal) or for many other functions with subnormal arguments). If MATH_ERRNO bit is set, ERANGE may be assigned to errno. If MATH_ERREXCEPT bit is set, FE_UNDERFLOW may be raised.

[edit] Example

[edit] See also

floating-point exceptions
(macro constant)
macro which expands to POSIX-compatible thread-local error number variable
(macro variable)